Wigner Crystals

On the Theoretical Prediction and the First Imaging

Louis Böhm

USP IFSC

2025-06-22

Definition 1.1 Wigner Crystals: A phase of electrons that occurs when the Coulomb potential between the electrons dominates over their kinetic energy. The electrons localize into a regular lattice structure to minimize their energy.

Figure 2: [1]

Historical context of Wigner crystals:

• 1934: Theoretical prediction by Eugene Wigner [2].

Figure 2: [1]

Historical context of Wigner crystals:

- 1934: Theoretical prediction by Eugene Wigner [2].
- 1979: First indirect observation by C. Grimes and G. Adams [3].

Figure 2: [1]

Historical context of Wigner crystals:

- 1934: Theoretical prediction by Eugene Wigner [2].
- 1979: First indirect observation by C. Grimes and G. Adams [3].
- 2024: First imaging of Wigner crystals by Y. Tsui and colleagues [4].

Figure 3: [1]

Research on Wigner crystals is important to better understand

Figure 3: [1]

Research on Wigner crystals is important to better understand

• quantum phase transitions.

Figure 3: [1]

Research on Wigner crystals is important to better understand

- quantum phase transitions.
- quantum hall effect.

Figure 3: [1]

Research on Wigner crystals is important to better understand

- quantum phase transitions.
- quantum hall effect.
- transport phenomena in specific materials.

Figure 3: [1]

Research on Wigner crystals is important to better understand

- quantum phase transitions.
- quantum hall effect.
- transport phenomena in specific materials.

 \rightarrow Combines quantum mechanics and condensed matter physics.

Contents

Contents

1.	Motivation	1
2.	Theory Background 1: Jellium Model	5
3.	Conditions for Wigner Crystallization)
4.	Theory Background 2: Landau Levels 14	1
5.	Experimental Observations 16	5
6.	Conclusion and Outlook)

• Expands on the free electron model.

- Expands on the free electron model.
- Valence electrons move through Jellium as uniform electron gas.

- Expands on the free electron model.
- Valence electrons move through Jellium as uniform electron gas.

Definition 2.1 Jellium: A uniform neutralizing background charge that is constructed by averaging out all atomic nuclei and core electrons, disregarding their individual positions.

- Expands on the free electron model.
- Valence electrons move through Jellium as uniform electron gas.

Definition 2.1 Jellium: A uniform neutralizing background charge that is constructed by averaging out all atomic nuclei and core electrons, disregarding their individual positions.

- Most useful when valence electrons,
 - ▶ are de-localized.
 - do not participate in chemical bonding.

Important parameter:

Definition 2.2 Wigner-Seitz Radius r_s : Average distance between a pair of valence electrons in a uniform electron gas.

Important parameter:

Definition 2.1 Wigner-Seitz Radius r_s : Average distance between a pair of valence electrons in a uniform electron gas.

In two dimensions:

$$r_s = \frac{1}{a_B \sqrt{\pi \mathbf{n}}}$$

3. Conditions for Wigner Crystallization

3.1 Energy Considerations 3. Conditions for Wigner Crystallization Conditions for Wigner crystallization: $U_C(r_s) > E_{kin}(r_s)$

3.1 Energy Considerations 3. Conditions for Wigner Crystallization Conditions for Wigner crystallization: $U_C(r_s) > E_{kin}(r_s)$

- Coulomb Potential Energy $U_C(r_s)$:

$$U_C(r_s) = \frac{e^2}{4\pi\varepsilon r_s a_B} \propto \frac{1}{r_s}$$

3.1 Energy Considerations 3. Conditions for Wigner Crystallization Conditions for Wigner crystallization: $U_C(r_s) > E_{kin}(r_s)$

- Coulomb Potential Energy $U_C(r_s)$:

$$U_C(r_s) = \frac{e^2}{4\pi\varepsilon r_s a_B} \propto \frac{1}{r_s}$$

• Kinetic energy $E_{\rm kin}(r_s)$ (2D):

$$E_{\rm kin}(r_s) = \frac{\hbar^2}{m r_s^2 a_B^2} \propto \frac{1}{r_s^2}$$

3.2 Phase Boundary

3. Conditions for Wigner Crystallization

Assume: P = const., T = const.

3.2 Phase Boundary

3. Conditions for Wigner Crystallization

Assume: P = const., T = const.

$$\rightarrow P = CT^4$$

Variational Monte Carlo to estimate Ground state energy (Tanatar and Ceperley, 1989, [5])

Variational Monte Carlo to estimate Ground state energy (Tanatar and Ceperley, 1989, [5])

Definition 3.3.1 Variational Monte Carlo (VMC): A computational method that uses a trial wave function to estimate the ground state energy of a quantum system by sampling configurations *R* and calculating expectation values.

Variational Monte Carlo to estimate Ground state energy (Tanatar and Ceperley, 1989, [5])

Definition 3.3.1 Variational Monte Carlo (VMC): A computational method that uses a trial wave function to estimate the ground state energy of a quantum system by sampling configurations *R* and calculating expectation values.

• Configurations R are positions of electrons.

Variational Monte Carlo to estimate Ground state energy (Tanatar and Ceperley, 1989, [5])

Definition 3.3.1 Variational Monte Carlo (VMC): A computational method that uses a trial wave function to estimate the ground state energy of a quantum system by sampling configurations *R* and calculating expectation values.

- Configurations R are positions of electrons.
- Trial wave function $\Psi_T(R)$ is an initial guess of the ground state.

Variational Monte Carlo to estimate Ground state energy (Tanatar and Ceperley, 1989, [5])

Definition 3.3.1 Variational Monte Carlo (VMC): A computational method that uses a trial wave function to estimate the ground state energy of a quantum system by sampling configurations R and calculating expectation values.

- Configurations R are positions of electrons.
- Trial wave function $\Psi_T(R)$ is an initial guess of the ground state.
- + $\Psi_T(R)$ encapsulates the physics and symmetries of the system.

3.3 Computational Methods 3. Conditions for Wigner Crystallization

Expected value of r_s to achieve Wigner crystallization: $r_s = 37 \pm 5$

Louis Böhm

4. Theory Background 2: Landau Levels 4. Theory Background 2: Landau Levels

Definition 4.1 Landau Levels: Discrete energy levels of charged particles in a uniform magnetic field, leading to quantized cyclotron orbits.

4. Theory Background 2: Landau Levels

Definition 4.1 Landau Levels: Discrete energy levels of charged particles in a uniform magnetic field, leading to quantized cyclotron orbits.

$$E_n = \hbar \omega_c \left(n + rac{1}{2}
ight), \ \ {\rm with} \ \ \omega_c = rac{|eB|}{m}$$

4. Theory Background 2: Landau Levels

Definition 4.1 Landau Levels: Discrete energy levels of charged particles in a uniform magnetic field, leading to quantized cyclotron orbits.

$$E_n = \hbar \omega_c \left(n + rac{1}{2}
ight), \ \ {
m with} \ \ \omega_c = rac{|eB|}{m}$$

Landau radius r_L :

$$r_L = \frac{\hbar}{m\omega_c}$$

5. Experimental Observations

5.1 Experimental Setup

5. Experimental Observations

Measurement: Scanning Tunneling Microscope (STM)

Figure 11: [6]

5.1 Experimental Setup

<u>Sample:</u> Ultra-pure bi-layer graphene

Figure 12: [4]

5. Experimental Observations

5.2 Results

5. Experimental Observations

Figure 13: [4]

	Louis	Böhm
--	-------	------

6. Conclusion and Outlook

6. Conclusion and Outlook

• 90 years of advancements were needed to image Wigner crystals.

6. Conclusion and Outlook

- 90 years of advancements were needed to image Wigner crystals.
- WCs bridge quantum mechanics and condensed matter physics.

6. Conclusion and Outlook

- 90 years of advancements were needed to image Wigner crystals.
- WCs bridge quantum mechanics and condensed matter physics.

• Still active research area.

- 90 years of advancements were needed to image Wigner crystals.
- WCs bridge quantum mechanics and condensed matter physics.

- Still active research area.
- Many open questions remain, such as:
 - How does quantum phase transition occur in Wigner crystals?
 - Applications?
 - Imaging three-dimensional Wigner crystals?

References

- [1] O. Morsch, "A crystal made of electrons." [Online]. Available: https://ethz.ch/en/news-and-events/eth-news/news/2021/07/acrystal-made-of-electrons.html
- [2] E. Wigner, "On the Interaction of Electrons in Metals," *Physical Review*, vol. 46, no. 11, pp. 1002–1011, 1934, doi: 10.1103/ physrev.46.1002.
- [3] C. C. Grimes and G. Adams, "Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons," *Physical Review Letters*, vol. 42, no. 12, pp. 795–798, 1979, doi: 10.1103/physrevlett.42.795.

- [4] Y.-C. Tsui *et al.*, "Direct observation of a magnetic-field-induced Wigner crystal," *Nature*, vol. 628, no. 8007, pp. 287–292, 2024, doi: 10.1038/s41586-024-07212-7.
- [5] B. Tanatar and D. M. Ceperley, "Ground state of the twodimensional electron gas," *Physical Review B*, vol. 39, no. 8, pp. 5005–5016, 1989, doi: 10.1103/physrevb.39.5005.
- [6] T. B. Group, "Scanning tunnel microscope." [Online]. Available: https://www.physics.rutgers.edu/Bartgroup/STM.htm